官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考: 。习惯上,我们会按下面格式引入所需要的包:

In [1]: import pandas as pdIn [2]: import numpy as npIn [3]: import matplotlib.pyplot as plt

一、            创建对象

可以通过  来查看有关该节内容的详细信息。

1、可以通过传递一个list对象来创建一个Seriespandas会默认创建整型索引:

In [4]: s = pd.Series([1,3,5,np.nan,6,8])In [5]: sOut[5]: 0   1.0 1   3.0 2   5.0 3   NaN 4   6.0 5   8.0 dtype: float64

2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame

In [6]: dates = pd.date_range('20130101', periods=6)In [7]: datesOut[7]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',       '2013-01-05', '2013-01-06'],       dtype='datetime64[ns]', freq='D')In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))In [9]: dfOut[9]:                   A      B     C     D          2013-01-01  0.469112 -0.282863 -1.509059 -1.135632          2013-01-02  1.212112 -0.173215  0.119209 -1.044236          2013-01-03 -0.861849 -2.104569 -0.494929  1.071804          2013-01-04  0.721555 -0.706771 -1.039575  0.271860          2013-01-05 -0.424972  0.567020  0.276232 -1.087401          2013-01-06 -0.673690  0.113648 -1.478427  0.524988

3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame

In [10]: df2 = pd.DataFrame({ 'A' : [1.],   ....:                     'B' : pd.Timestamp('20130102'),     ....:                     'C' : pd.Series(1,index=list(range(4)),dtype='float32'),      ....:                     'D' : np.array([3] * 4,dtype='int32'),      ....:                     'E' : pd.Categorical(["test","train","test","train"]),      ....:                     'F' : 'foo' })      ....:  In [11]: df2 Out[11]:            A      B    C   D    E    F 0  1.0 2013-01-02  1.0  3   test  foo 1  1.0 2013-01-02  1.0  3  train  foo 2  1.0 2013-01-02  1.0  3   test  foo 3  1.0 2013-01-02  1.0  3  train  foo

4、查看不同列的数据类型:

In [12]: df2.dtypesOut[12]: A           float64B       datetime64[ns]C           float32D            int32E          categoryF            objectdtype: object

5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:

In [13]: df2.
df2.A                  df2.booldf2.abs                df2.boxplotdf2.add                df2.Cdf2.add_prefix             df2.clipdf2.add_suffix             df2.clip_lowerdf2.align               df2.clip_upperdf2.all                df2.columnsdf2.any                df2.combinedf2.append               df2.combine_firstdf2.apply               df2.compounddf2.applymap              df2.consolidatedf2.D

二、            查看数据

详情请参阅:

 

1、  查看frame中头部和尾部的数据(默认5行):

In [14]: df.head()Out[14]:            A         B    C       D2013-01-01  0.469112 -0.282863 -1.509059 -1.1356322013-01-02  1.212112 -0.173215  0.119209 -1.0442362013-01-03 -0.861849 -2.104569 -0.494929  1.0718042013-01-04  0.721555 -0.706771 -1.039575  0.2718602013-01-05 -0.424972  0.567020  0.276232 -1.087401In [15]: df.tail(3)Out[15]:                           A    B         C      D2013-01-04  0.721555 -0.706771 -1.039575  0.2718602013-01-05 -0.424972  0.567020  0.276232 -1.0874012013-01-06 -0.673690  0.113648 -1.478427  0.524988

2、  显示索引、列和底层的numpy数据:

In [16]: df.indexOut[16]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',                 '2013-01-05', '2013-01-06'],                              dtype='datetime64[ns]', freq='D')In [17]: df.columnsOut[17]: Index(['A', 'B', 'C', 'D'], dtype='object')In [18]: df.valuesOut[18]: array([[ 0.4691, -0.2829, -1.5091, -1.1356],            [ 1.2121, -0.1732,  0.1192, -1.0442],                   [-0.8618, -2.1046, -0.4949,  1.0718],                   [ 0.7216, -0.7068, -1.0396,  0.2719],                   [-0.425 ,  0.567 ,  0.2762, -1.0874],                   [-0.6737,  0.1136, -1.4784,  0.525 ]])

3、  describe()函数对于数据的快速统计汇总:

In [19]: df.describe()Out[19]:               A         B      C       D       count  6.000000  6.000000  6.000000  6.000000       mean   0.073711  -0.431125  -0.687758  -0.233103       std   0.843157  0.922818  0.779887  0.973118       min   -0.861849  -2.104569  -1.509059  -1.135632       25%   -0.611510  -0.600794  -1.368714  -1.076610       50%   0.022070  -0.228039  -0.767252  -0.386188       75%   0.658444  0.041933  -0.034326  0.461706       max   1.212112  0.567020  0.276232  1.071804

4、  对数据的转置:

In [20]: df.TOut[20]:     2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

5、  按轴进行排序

  • axis = 0代表的是行,也就是index。axis = 1代表的是列,也就是columns。

  • axis = 1,指的是沿着行进行运算,代表了横轴,那axis = 0,就是沿着列进行运算,代表了纵轴。

In [21]: df.sort_index(axis=1, ascending=False)Out[21]:         D     C     B       A2013-01-01 -1.135632 -1.509059 -0.282863  0.4691122013-01-02 -1.044236  0.119209 -0.173215  1.2121122013-01-03  1.071804 -0.494929 -2.104569 -0.8618492013-01-04  0.271860 -1.039575 -0.706771  0.7215552013-01-05 -1.087401  0.276232  0.567020 -0.4249722013-01-06  0.524988 -1.478427  0.113648 -0.673690

6、  按值进行排序

In [22]: df.sort_values(by='B')Out[22]:                 A        B      C       D2013-01-03 -0.861849 -2.104569 -0.494929  1.0718042013-01-04  0.721555 -0.706771 -1.039575  0.2718602013-01-01  0.469112 -0.282863 -1.509059 -1.1356322013-01-02  1.212112 -0.173215  0.119209 -1.0442362013-01-06 -0.673690  0.113648 -1.478427  0.5249882013-01-05 -0.424972  0.567020  0.276232 -1.087401

三、 选择

虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at.iat.loc.iloc  .ix详情请参阅  

很常用的但是原文中没说的一个查询:通过行号和列名定位单元格,比如取出第三行的pname字段的值,我的办法:

df.iloc[2].pname,如果你明确知道行索引可以用loc:df.loc[index].pname;最后是万能式:df.ix[2][pname]或df.ix[index][2],索引与列,均可为序号或名称

(一)获取

1、 选择一个单独的列,这将会返回一个Series,等同于df.A

In [23]: df['A']Out[23]: 2013-01-01    0.469112 2013-01-02    1.212112 2013-01-03   -0.861849 2013-01-04    0.721555 2013-01-05   -0.424972 2013-01-06   -0.673690 Freq: D, Name: A, dtype: float64

2、 通过[]进行选择,这将会对行进行切片

In [24]: df[0:3]Out[24]:             A       B       C      D2013-01-01  0.469112 -0.282863 -1.509059 -1.1356322013-01-02  1.212112 -0.173215  0.119209 -1.0442362013-01-03 -0.861849 -2.104569 -0.494929  1.071804In [25]: df['20130102':'20130104']Out[25]:               A       B        C      D2013-01-02  1.212112 -0.173215  0.119209 -1.0442362013-01-03 -0.861849 -2.104569 -0.494929  1.0718042013-01-04  0.721555 -0.706771 -1.039575  0.271860

(二) 通过标签选择

更多阅读查看 

1、 使用标签来获取一个交叉的区域

In [26]: df.loc[dates[0]]Out[26]: A   0.469112B   -0.282863C   -1.509059D   -1.135632Name: 2013-01-01 00:00:00, dtype: float64

2、 通过标签来在多个轴上进行选择

In [27]: df.loc[:,['A','B']]Out[27]:                 A         B2013-01-01  0.469112 -0.2828632013-01-02  1.212112 -0.1732152013-01-03 -0.861849 -2.1045692013-01-04  0.721555 -0.7067712013-01-05 -0.424972  0.5670202013-01-06 -0.673690  0.113648

3、 标签切片

In [28]: df.loc['20130102':'20130104',['A','B']]Out[28]:                A        B2013-01-02  1.212112 -0.1732152013-01-03 -0.861849 -2.1045692013-01-04  0.721555 -0.706771

4、对于返回的对象进行维度缩减

In [29]: df.loc['20130102',['A','B']]Out[29]: A    1.212112 B   -0.173215 Name: 2013-01-02 00:00:00, dtype: float64

5、 获取一个标量

In [30]: df.loc[dates[0],'A']Out[30]: 0.46911229990718628

6、 快速访问一个标量(与上一个方法等价)

In [31]: df.at[dates[0],'A']Out[31]: 0.46911229990718628

(三)通过位置选择

1、 使用iloc通过传递数值(行号,不能是标签)进行位置选择(选择的是行)

In [32]: df.iloc[3]Out[32]: A    0.721555 B   -0.706771 C   -1.039575 D    0.271860 Name: 2013-01-04 00:00:00, dtype: float64

2、 通过数值进行切片,与numpy/python中的情况类似

In [33]: df.iloc[3:5,0:2]Out[33]:                A        B2013-01-04  0.721555 -0.7067712013-01-05 -0.424972  0.567020

3、 通过指定一个位置的列表,与numpy/python中的情况类似

In [34]: df.iloc[[1,2,4],[0,2]]Out[34]:                A         C2013-01-02  1.212112  0.1192092013-01-03   -0.861849 -0.4949292013-01-05  -0.424972  0.276232

4、 对行进行切片

In [35]: df.iloc[1:3,:]Out[35]:                    A       B        C       D2013-01-02  1.212112 -0.173215  0.119209 -1.0442362013-01-03  -0.861849 -2.104569 -0.494929  1.071804

5、 对列进行切片

In [36]: df.iloc[:,1:3]Out[36]:               B       C2013-01-01 -0.282863 -1.5090592013-01-02 -0.173215  0.1192092013-01-03 -2.104569 -0.4949292013-01-04 -0.706771 -1.0395752013-01-05  0.567020  0.2762322013-01-06  0.113648 -1.478427

6、 获取特定的值

In [37]: df.iloc[1,1]Out[37]: -0.17321464905330858

7、快速访问一个标量(等同于前面的方法)

In [38]: df.iat[1,1]Out[38]: -0.17321464905330858

(四)布尔索引

1、 使用一个单独列的值来选择数据:

In [39]: df[df.A > 0]Out[39]:                    A       B        C       D 2013-01-01  0.469112 -0.282863 -1.509059 -1.135632 2013-01-02  1.212112 -0.173215  0.119209 -1.044236 2013-01-04  0.721555 -0.706771 -1.039575  0.271860

2、(获取所有DataFrame中满足条件的数据

In [40]: df[df > 0]Out[40]:                A         B        C      D2013-01-01  0.469112       NaN       NaN     NaN2013-01-02  1.212112       NaN       0.119209     NaN2013-01-03     NaN       NaN       NaN  1.0718042013-01-04  0.721555       NaN       NaN  0.2718602013-01-05     NaN       0.567020       0.276232     NaN2013-01-06     NaN       0.113648       NaN  0.524988

3、 使用isin()方法来过滤:

在索引index中搜索,这是最基本的查询了:

比如查询数据中是否有‘2013-01-01’ 这天的数据:

if len(df.query('index == "{0}"'.format('2013-01-01')) )>0:

In [41]: df2 = df.copy()In [42]: df2['E'] = ['one', 'one','two','three','four','three']In [43]: df2Out[43]:                    A      B       C      D      E2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one2013-01-03  -0.861849 -2.104569 -0.494929  1.071804   two2013-01-04  0.721555 -0.706771 -1.039575  0.271860   three2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four2013-01-06 -0.673690  0.113648 -1.478427  0.524988  threeIn [44]: df2[df2['E'].isin(['two','four'])]Out[44]:                    A        B     C       D      E2013-01-03 -0.861849 -2.104569  -0.494929  1.071804   two2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

(五)设置

按条件修改列值:

list(df['colName'].apply(lambda x:1 if x>np.mean(df(traindf['colName'])) else 0))#大于该列平均值则为1

1、 设置一个新的列:

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))In [46]: s1Out[46]: 2013-01-02    12013-01-03    22013-01-04    32013-01-05    42013-01-06    52013-01-07    6Freq: D, dtype: int64In [47]: df['F'] = s1

2、 通过标签设置新的值:

In [48]: df.at[dates[0],'A'] = 0

3、 通过位置设置新的值:

In [49]: df.iat[0,1] = 0

4、 通过一个numpy数组设置一组新值:

In [50]: df.loc[:,'D'] = np.array([5] * len(df))

5、上述操作结果如下:

In [51]: dfOut[51]:                    A         B       C    D   F2013-01-01  0.000000  0.000000  -1.509059  5  NaN2013-01-02  1.212112  -0.173215  0.119209  5  1.02013-01-03  -0.861849  -2.104569  -0.494929  5  2.02013-01-04  0.721555  -0.706771  -1.039575  5  3.02013-01-05  -0.424972  0.567020  0.276232  5  4.02013-01-06  -0.673690  0.113648  -1.478427  5  5.0

6、通过where操作来设置新的值:

In [52]: df2 = df.copy()In [53]: df2[df2 > 0] = -df2In [54]: df2Out[54]:                 A      B    C    D  F2013-01-01  0.000000  0.000000 -1.509059 -5  NaN2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.02013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.02013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.02013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.02013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

四、   缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:。

1、  reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])In [56]: df1.loc[dates[0]:dates[1],'E'] = 1In [57]: df1Out[57]:                    A         B       C  D   F   E2013-01-01  0.000000  0.000000  -1.509059  5  NaN  1.02013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.02013-01-03  -0.861849 -2.104569  -0.494929  5  2.0  NaN2013-01-04  0.721555 -0.706771  -1.039575  5  3.0  NaN

2、  去掉包含缺失值的行:

In [58]: df1.dropna(how='any')Out[58]:                    A     B      C  D   F   E2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0

3、  对缺失值进行填充:

In [59]: df1.fillna(value=5)Out[59]:                    A         B       C  D   F    E2013-01-01  0.000000  0.000000  -1.509059  5  5.0  1.02013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.02013-01-03  -0.861849 -2.104569  -0.494929  5  2.0  5.02013-01-04  0.721555 -0.706771  -1.039575  5  3.0  5.0

4、  对数据进行布尔填充:

In [60]: pd.isna(df1)Out[60]:                 A    B     C     D     F    E2013-01-01  False  False  False  False  True   False2013-01-02  False  False  False  False  False  False2013-01-03  False  False  False  False  False   True2013-01-04  False  False  False  False  False   True

五、相关操作

详情请参与 

(一) 统计(相关操作通常情况下不包括缺失值)

1、  执行描述性统计:

In [61]: df.mean()Out[61]: A   -0.004474B   -0.383981C   -0.687758D    5.000000F    3.000000dtype: float64

2、  在其他轴上进行相同的操作:

In [62]: df.mean(1)Out[62]: 2013-01-01    0.8727352013-01-02    1.4316212013-01-03    0.7077312013-01-04    1.3950422013-01-05    1.8836562013-01-06    1.592306Freq: D, dtype: float64

3、  对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:

In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)In [64]: sOut[64]: 2013-01-01    NaN2013-01-02    NaN2013-01-03    1.02013-01-04    3.02013-01-05    5.02013-01-06    NaNFreq: D, dtype: float64In [65]: df.sub(s, axis='index')Out[65]:                      A         B         C   D    F2013-01-01       NaN       NaN       NaN  NaN  NaN2013-01-02       NaN       NaN       NaN  NaN  NaN2013-01-03    -1.861849    -3.104569    -1.494929  4.0  1.02013-01-04    -2.278445    -3.706771    -4.039575  2.0  0.02013-01-05    -5.424972    -4.432980    -4.723768  0.0 -1.02013-01-06       NaN       NaN       NaN  NaN  NaN

(二)应用

1、  对数据应用函数:

In [66]: df.apply(np.cumsum)Out[66]:                    A       B      C   D    F2013-01-01  0.000000  0.000000 -1.509059   5   NaN2013-01-02  1.212112 -0.173215 -1.389850  10   1.02013-01-03  0.350263 -2.277784 -1.884779  15   3.02013-01-04  1.071818 -2.984555 -2.924354  20   6.02013-01-05  0.646846 -2.417535 -2.648122  25  10.02013-01-06  -0.026844 -2.303886 -4.126549  30  15.0In [67]: df.apply(lambda x: x.max() - x.min())Out[67]: A    2.073961B    2.671590C    1.785291D    0.000000F    4.000000dtype: float64

(三)  直方图

具体请参照:

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))In [69]: sOut[69]: 0    41    22    13    24    65    46    47    68    49    4dtype: int64In [70]: s.value_counts()Out[70]: 4    56    22    21    1dtype: int64

(四) 字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:.

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])In [72]: s.str.lower()Out[72]: 0       a1       b2       c3    aaba4    baca5     NaN6    caba7     dog8     catdtype: object

六、   合并

Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:

(一)  连接

把一个字典插入表中形成新的一列:df['列名'][dict.keys()] = dict.values()

删除一列:del df['列名']

In [73]: df = pd.DataFrame(np.random.randn(10, 4))In [74]: dfOut[74]:         0       1      2      30 -0.548702  1.467327 -1.015962 -0.4830751  1.637550 -1.217659 -0.291519 -1.7455052 -0.263952  0.991460 -0.919069  0.2660463 -0.709661  1.669052  1.037882 -1.7057754 -0.919854 -0.042379  1.247642 -0.0099205  0.290213  0.495767  0.362949  1.5481066 -1.131345 -0.089329  0.337863 -0.9458677 -0.932132  1.956030  0.017587 -0.0166928 -0.575247  0.254161 -1.143704  0.2158979  1.193555 -0.077118 -0.408530 -0.862495# break it into piecesIn [75]: pieces = [df[:3], df[3:7], df[7:]]In [76]: pd.concat(pieces)Out[76]:        0       1      2        30  -0.548702  1.467327 -1.015962  -0.4830751  1.637550  -1.217659 -0.291519  -1.7455052  -0.263952  0.991460 -0.919069  0.2660463  -0.709661  1.669052  1.037882  -1.7057754  -0.919854  -0.042379  1.247642  -0.0099205  0.290213  0.495767  0.362949  1.5481066  -1.131345  -0.089329  0.337863  -0.9458677  -0.932132  1.956030  0.017587  -0.0166928  -0.575247  0.254161 -1.143704  0.2158979  1.193555  -0.077118 -0.408530  -0.862495

(二)连接

Join 类似于SQL类型的合并,具体请参阅:

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})In [79]: leftOut[79]:    key     lval0  foo     11  foo     2In [80]: rightOut[80]:    key     rval0  foo     41  foo     5In [81]: pd.merge(left, right, on='key')Out[81]:    key     lval     rval0  foo     1     41  foo     1     52  foo     2     43  foo     2     5

另一个能够展示的例子:

In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})In [84]: leftOut[84]:    key   lval0  foo     11  bar     2In [85]: rightOut[85]:    key   rval0  foo     41  bar     5In [86]: pd.merge(left, right, on='key')Out[86]:    key    lval  rval0  foo     1     41  bar     2     5

(三)附加

 Append 将一行连接到一个DataFrame上,具体请参阅

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])In [88]: dfOut[88]:         A       B       C       D0  1.346061  1.511763  1.627081  -0.9905821  -0.441652  1.211526  0.268520  0.0245802  -1.577585  0.396823  -0.105381  -0.5325323  1.453749  1.208843  -0.080952  -0.2646104  -0.727965  -0.589346  0.339969  -0.6932055  -0.339355  0.593616  0.884345  1.5914316  0.141809  0.220390  0.435589  0.1924517  -0.096701  0.803351  1.715071  -0.708758In [89]: s = df.iloc[3]In [90]: df.append(s, ignore_index=True)Out[90]:           A       B       C       D  0  1.346061  1.511763  1.627081  -0.990582  1  -0.441652  1.211526  0.268520  0.024580  2  -1.577585  0.396823  -0.105381  -0.532532  3  1.453749  1.208843  -0.080952  -0.264610  4  -0.727965  -0.589346  0.339969  -0.693205  5  -0.339355  0.593616  0.884345  1.591431  6  0.141809  0.220390  0.435589  0.192451  7  -0.096701  0.803351  1.715071  -0.708758  8  1.453749  1.208843  -0.080952  -0.264610

七、            分组

对于”group by”操作,我们通常是指以下一个或多个操作步骤:

l  (Splitting)按照一些规则将数据分为不同的组;

l  (Applying)对于每组数据分别执行一个函数;

l  (Combining)将结果组合到一个数据结构中;

详情请参阅:

In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',      ....:                           'foo', 'bar', 'foo', 'foo'],      ....:                    'B' : ['one', 'one', 'two', 'three',      ....:                           'two', 'two', 'one', 'three'],      ....:                    'C' : np.random.randn(8),      ....:                    'D' : np.random.randn(8)})      ....:    In [92]: df   Out[92]:         A      B       C       D   0  foo    one  -1.202872  -0.055224   1  bar    one  -1.814470  2.395985   2  foo    two  1.018601  1.552825   3  bar   three  -0.595447  0.166599   4  foo    two  1.395433  0.047609   5  bar    two  -0.392670  -0.136473   6  foo    one  0.007207  -0.561757   7  foo  three  1.928123   -1.623033

1、  分组并对每个分组执行sum函数:

In [93]: df.groupby('A').sum()Out[93]:          C        DA                     bar  -2.802588  2.42611foo  3.146492  -0.63958

2、  通过多个列进行分组形成一个层次索引,然后执行函数:

In [94]: df.groupby(['A','B']).sum()Out[94]:            C         D A   B                         bar one   -1.814470  2.395985         three  -0.595447  0.166599         two   -0.392670  -0.136473 foo one   -1.195665  -0.616981         three  1.928123  -1.623033         two    2.414034  1.600434

八、 重塑

详情请参阅   

(一)栈

In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',   ....:                      'foo', 'foo', 'qux', 'qux'],     ....:                     ['one', 'two', 'one', 'two',     ....:                      'one', 'two', 'one', 'two']]))     ....: In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])In [98]: df2 = df[:4]In [99]: df2Out[99]:                  A         Bfirst second                    bar   one     0.029399  -0.542108             two     0.282696  -0.087302baz   one    -1.575170  1.771208     two     0.816482  1.100230

stack()函数 “压缩” 数据桢的列一个级别.

In [100]: stacked = df2.stack()In [101]: stackedOut[101]: first  second   bar    one     A    0.029399            B    -0.542108             two     A    0.282696                                  B    -0.087302baz    one     A    -1.575170              B    1.771208      two     A    0.816482                                  B    1.100230dtype: float64

被“堆叠”数据桢或序列(有多个索引作为索引), 其stack()的反向操作是unstack(), 上面的数据默认反堆叠到上一级别:

In [102]: stacked.unstack()Out[102]:                      A         Bfirst second                    bar   one     0.029399 -0.542108      two     0.282696 -0.087302baz   one    -1.575170  1.771208            two     0.816482  1.100230In [103]: stacked.unstack(1)Out[103]: second        one       twofirst                      bar   A  0.029399  0.282696             B -0.542108 -0.087302baz   A -1.575170  0.816482            B  1.771208  1.100230In [104]: stacked.unstack(0)Out[104]: first        bar      bazsecond                      one    A  0.029399  -1.575170          B  -0.542108  1.771208two    A  0.282696  0.816482          B  -0.087302  1.100230

(二)数据透视表,详情请参阅:.

In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,   .....:                    'B' : ['A', 'B', 'C'] * 4,  .....:                    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,     .....:                    'D' : np.random.randn(12),     .....:                    'E' : np.random.randn(12)})     .....: In [106]: dfOut[106]:         A  B    C         D         E  0     one  A  foo  1.418757 -0.179666  1     one  B  foo  -1.879024  1.291836  2     two  C  foo  0.536826  -0.009614  3    three  A  bar  1.006160  0.392149  4     one  B  bar  -0.029716  0.264599  5     one  C  bar  -1.146178  -0.057409  6     two  A  foo   0.100900  -1.425638  7    three  B  foo  -1.035018  1.024098  8     one  C  foo   0.314665  -0.106062  9     one  A  bar  -0.773723  1.824375  10     two  B  bar   -1.170653  0.595974  11    three  C  bar   0.648740  1.167115

可以从这个数据中轻松的生成数据透视表:

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])Out[107]: C         bar       foo A     B                     one   A -0.773723  1.418757               B -0.029716  -1.879024              C -1.146178  0.314665 three  A  1.006160      NaN              B     NaN  -1.035018              C  0.648740     NaN two   A     NaN  0.100900       B -1.170653     NaN            C     NaN  0.536826

九、时间序列

pandas有易用,强大且高效的函数用于高频数据重采样转换操作(例如,转换秒数据到5分钟数据), 这是很普遍的情况,但并不局限于金融应用, 请参阅

In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)In [110]: ts.resample('5Min').sum()Out[110]: 2012-01-01    25083Freq: 5T, dtype: int64

时区表示

In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)In [113]: tsOut[113]: 2012-03-06    0.464000 2012-03-07    0.227371 2012-03-08   -0.496922 2012-03-09    0.306389 2012-03-10   -2.290613 Freq: D, dtype: float64 In [114]: ts_utc = ts.tz_localize('UTC') In [115]: ts_utc Out[115]:  2012-03-06 00:00:00+00:00    0.464000 2012-03-07 00:00:00+00:00    0.227371 2012-03-08 00:00:00+00:00   -0.496922 2012-03-09 00:00:00+00:00    0.306389 2012-03-10 00:00:00+00:00   -2.290613 Freq: D, dtype: float64

转换到其它时区

In [116]: ts_utc.tz_convert('US/Eastern')Out[116]:2012-03-05 19:00:00-05:00    0.4640002012-03-06 19:00:00-05:00    0.2273712012-03-07 19:00:00-05:00    -0.4969222012-03-08 19:00:00-05:00    0.3063892012-03-09 19:00:00-05:00    -2.290613Freq: D, dtype: float64

转换不同的时间跨度

In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)In [119]: tsOut[119]: 2012-01-31   -1.1346232012-02-29   -1.5618192012-03-31   -0.2608382012-04-30    0.2819572012-05-31    1.523962Freq: M, dtype: float64In [120]: ps = ts.to_period()In [121]: psOut[121]: 2012-01   -1.1346232012-02   -1.5618192012-03   -0.2608382012-04    0.2819572012-05    1.523962Freq: M, dtype: float64In [122]: ps.to_timestamp()Out[122]: 2012-01-01   -1.1346232012-02-01   -1.5618192012-03-01   -0.2608382012-04-01    0.2819572012-05-01    1.523962Freq: MS, dtype: float64

转换时段并且使用一些运算函数, 下例中, 我们转换年报11月到季度结束每日上午9点数据

In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9In [126]: ts.head()Out[126]: 1990-03-01 09:00   -0.9029371990-06-01 09:00    0.0681591990-09-01 09:00   -0.0578731990-12-01 09:00   -0.3682041991-03-01 09:00   -1.144073Freq: H, dtype: float64

十、分类     

从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:和。

In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

1、  将原始的grade转换为Categorical数据类型:

In [128]: df["grade"] = df["raw_grade"].astype("category")In [129]: df["grade"]Out[129]: 0    a1    b2    b3    a4    a5    eName: grade, dtype: categoryCategories (3, object): [a, b, e]

2、  将Categorical类型数据重命名为更有意义的名称:

In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

3、  对类别进行重新排序,增加缺失的类别:

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])In [132]: df["grade"]Out[132]: 0    very good1        good2        good3    very good4    very good5     very badName: grade, dtype: categoryCategories (5, object): [very bad, bad, medium, good, very good]4、  排序是按照Categorical的顺序进行的而不是按照字典顺序进行:
In [133]: df.sort_values(by="grade")Out[133]:    id     raw_grade     grade5   6         e   very bad1   2         b      good2   3         b      good0   1         a  very good3   4         a  very good4   5         a  very good

5、  对Categorical列进行排序时存在空的类别:

In [134]: df.groupby("grade").size()Out[134]: gradevery bad     1bad          0medium       0good         2very good    3dtype: int64

十一、           画图

具体文档参看: docs

In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))In [136]: ts = ts.cumsum()In [137]: ts.plot()Out[137]: 

对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:

In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,  .....:                   columns=['A', 'B', 'C', 'D'])     .....: In [139]: df = df.cumsum()In [140]: plt.figure(); df.plot(); plt.legend(loc='best')Out[140]: 

_images/frame_plot_basic.png

十二、           导入和保存数据

(一) CSV,参考:

1、  写入csv文件:

In [141]: df.to_csv('foo.csv')

2、  从csv文件中读取:

In [142]: pd.read_csv('foo.csv')Out[142]:      Unnamed: 0          A          B         C          D0    2000-01-01   0.266457  -0.399641 -0.219582   1.1868601    2000-01-02  -1.170732  -0.345873  1.653061  -0.2829532    2000-01-03  -1.734933   0.530468  2.060811  -0.5155363    2000-01-04  -1.555121   1.452620  0.239859  -1.1568964    2000-01-05   0.578117   0.511371  0.103552  -2.4282025    2000-01-06   0.478344   0.449933 -0.741620  -1.9624096    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753..          ...        ...        ...       ...        ...993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368[1000 rows x 5 columns]

(二)HDF5,参考:

1、  写入HDF5存储:

In [143]: df.to_hdf('foo.h5','df')

2、  从HDF5存储中读取:

In [144]: pd.read_hdf('foo.h5','df')Out[144]:                A        B      C        D 2000-01-01   0.266457  -0.399641 -0.219582   1.186860 2000-01-02  -1.170732  -0.345873  1.653061  -0.282953 2000-01-03  -1.734933   0.530468  2.060811  -0.515536 2000-01-04  -1.555121   1.452620  0.239859  -1.156896 2000-01-05   0.578117   0.511371  0.103552  -2.428202 2000-01-06   0.478344   0.449933 -0.741620  -1.962409 2000-01-07   1.235339  -0.091757 -1.543861  -1.084753 ...                ...         ...        ...         ... 2002-09-20 -10.628548  -9.153563 -7.883146  28.313940 2002-09-21 -10.390377  -8.727491 -6.399645  30.914107 2002-09-22  -8.985362  -8.485624 -4.669462  31.367740 2002-09-23  -9.558560  -8.781216 -4.499815  30.518439 2002-09-24  -9.902058  -9.340490 -4.386639  30.105593 2002-09-25 -10.216020  -9.480682 -3.933802  29.758560 2002-09-26 -11.856774 -10.671012 -3.216025  29.369368 [1000 rows x 4 columns]

(三)Excel,参考:

1、  写入excel文件:

In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

2、  从excel文件中读取:

In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])Out[146]:                  A        B      C        D2000-01-01   0.266457  -0.399641 -0.219582   1.1868602000-01-02  -1.170732  -0.345873  1.653061  -0.2829532000-01-03  -1.734933   0.530468  2.060811  -0.5155362000-01-04  -1.555121   1.452620  0.239859  -1.1568962000-01-05   0.578117   0.511371  0.103552  -2.4282022000-01-06   0.478344   0.449933 -0.741620  -1.9624092000-01-07   1.235339  -0.091757 -1.543861  -1.084753...               ...        ...       ...        ...2002-09-20 -10.628548  -9.153563 -7.883146  28.3139402002-09-21 -10.390377  -8.727491 -6.399645  30.9141072002-09-22  -8.985362  -8.485624 -4.669462  31.3677402002-09-23  -9.558560  -8.781216 -4.499815  30.5184392002-09-24  -9.902058  -9.340490 -4.386639  30.1055932002-09-25 -10.216020  -9.480682 -3.933802  29.7585602002-09-26 -11.856774 -10.671012 -3.216025  29.369368[1000 rows x 4 columns]